$\begingroup$
Bạn đang xem: cos2x +sin2x
I'll need to tướng memorize $\cos2x = \cos^2x - \sin^2x$ as I'll use it in derivatives.
Only, there are other forms for this identity, I can't see how I can get to tướng the others from this one above.
The other forms are
$$2\cos^2x - 1\\ 1 - 2\sin^2x$$
asked Jul 30, 2017 at 1:00
Goun2Goun2
6271 gold badge10 silver badges22 bronze badges
$\endgroup$
1
$\begingroup$
You can bởi it by using the Pythagorean identity: $\sin^2 x+\cos^2 x =1$. This can be rewritten two different ways:
$$\sin^2 x = 1- \cos^2 x$$
and
$$\cos^2 x = 1 - \sin^2 x$$
Use either of these formulas to tướng replace the $\sin^2 x$, or the $\cos^2 x$, on the right side of your identity. That will give you the other two forms.
answered Jul 30, 2017 at 1:02
G Tony JacobsG Tony Jacobs
30.8k4 gold badges51 silver badges104 bronze badges
$\endgroup$
$\begingroup$
$$\cos 2x$$ $$=\cos^2 x-\sin^2 x$$ $$=2\cos^2 x-(\sin^2 x+\cos^2 x)$$ $$=2\cos^2 x-1$$ On the other hand, $$\cos 2x$$ $$=\cos^2 x-\sin^2 x$$ $$=\cos^2 x+\sin^2 x-2\sin^2 x$$ $$=1-2\sin^2 x$$
answered Jul 30, 2017 at 1:04
BAIBAI
2,52511 silver badges21 bronze badges
$\endgroup$
$\begingroup$
This is because $\sin^2x + \cos^2=1$
$$\cos^2x - \sin^2x$$ $$=2\cos^2 -(\sin^2x+\cos^2x)=2\cos^2x-1$$ $$=(\cos^2x+\sin^2x)-2\sin^2x=1-2\sin^2x$$
answered Jul 30, 2017 at 1:01
Jay ZhaJay Zha
7,7521 gold badge25 silver badges36 bronze badges
$\endgroup$
$\begingroup$
I remember this easiest using Euler's identity:
$$ e^{i2x} = \cos2x + i\sin2x $$
and remembering that $e^{inx} = \left(e^{ix}\right)^n$ consider,
$$ \left(e^{ix}\right)^2 = \left(\cos x + i\sin x \right)^2 = \cos^2 x + 2i\cos x\sin x - \sin^2 x $$
Now equate the real parts, $$\Re[e^{i2x}] = \Re[\left(e^{ix}\right)^2]\implies \cos2x=\cos^2x-\sin^2x $$
answered Jul 30, 2017 at 1:16
Dando18Dando18
5,3504 gold badges18 silver badges41 bronze badges
$\endgroup$
$\begingroup$
\begin{align} \cos 2\theta &= \cos^2 \theta - \sin^2 \theta\\ 1 &= \cos^2 \theta + \sin^2 \theta \\ \end{align}
Adding, you get \begin{align} \cos 2\theta + 1 &= 2 \cos^2 \theta \\ \cos 2\theta &= 2 \cos^2 \theta - 1 \\ \end{align}
Subtracting, you get \begin{align} \cos 2\theta - 1 &= -2 \sin^2 \theta \\ \cos 2\theta &= 1 - 2 \cos^2 \theta \\ \end{align}
answered Jul 30, 2017 at 5:15
$\endgroup$
You must log in to tướng answer this question.
Not the answer you're looking for? Browse other questions tagged
.
Xem thêm: biểu thức nào dưới đây là biểu thức định nghĩa điện dung của tụ điện
Not the answer you're looking for? Browse other questions tagged
.
Xem thêm: biểu thức nào dưới đây là biểu thức định nghĩa điện dung của tụ điện
Bình luận